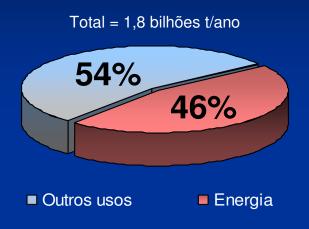
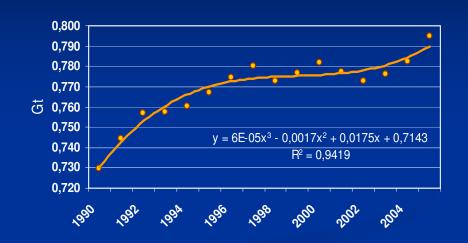
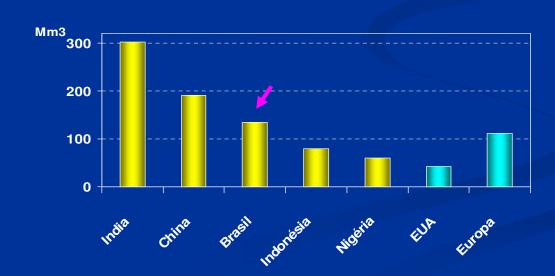

## 1º. MADEN 2008 - INEE Como evoluir a produtividade da cadeia de madeira energética



José Otávio Brito – Professor Titular

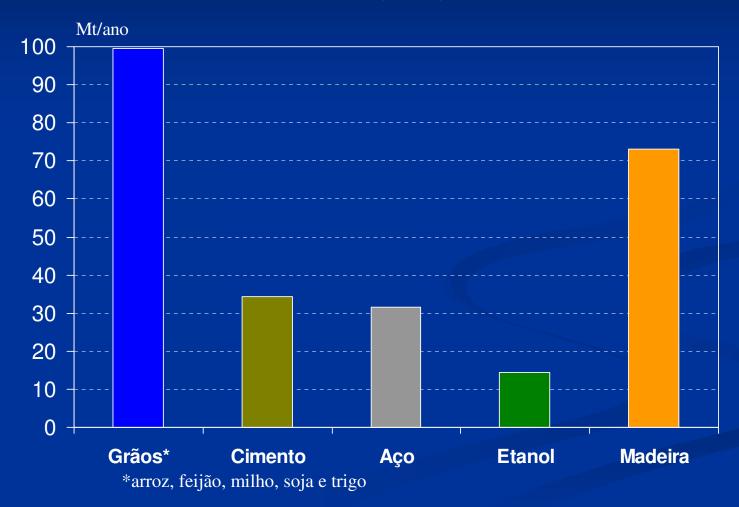

ESALQ / USP – Piracicaba, SP – (19) 34294100 - jotbrito@esalq.usp.br


#### MUNDO: CONSUMO TOTAL DE MADEIRA PARA TODOS OS USOS

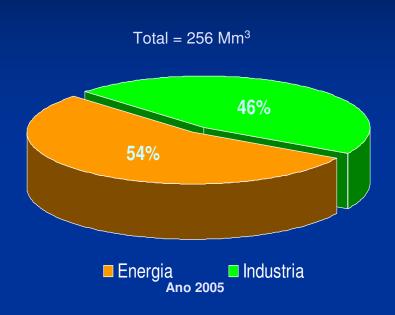


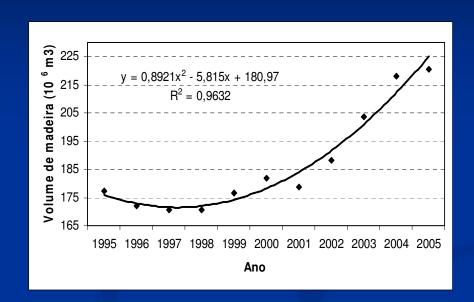

Editado por J. O. Brito FAO, 2007

#### **MUNDO: CONSUMO DE MADEIRA PARA ENERGIA**







#### BRASIL: CONSUMO TOTAL DE MADEIRA PARA TODOS OS USOS

Estimativa média anual para o período 2002-2005



#### **BRASIL: CONSUMO DE MADEIRA ENERGIA**





#### Em 2007

Madeira para energia = US\$ 2.0 bilhões de dólares

Exportações de celulose e papel = US\$ 2.3 bilhões

#### **BALANÇO ENERGÉTICO**

#### Floresta plantada - 40 m<sup>3</sup>/ha.ano

#### **Consumos:**

- 35 mil calorias/t madeira produção
- 70 mil calorias/t madeira transporte

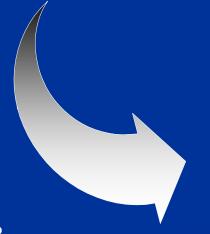
#### **Energia gerada:**

- 2,8 Mcal/t madeira → Rendimento = 96 %

#### BALANÇO ECONÔMICO

### Floresta plantada - 30 m<sup>3</sup>/ha.ano

- Custos:
  - implantação: US\$ 1,000.00/ha
  - exploração final: US\$ 16.00/m³ ou US\$ 12.00/Gcal ou US\$16.44/bep

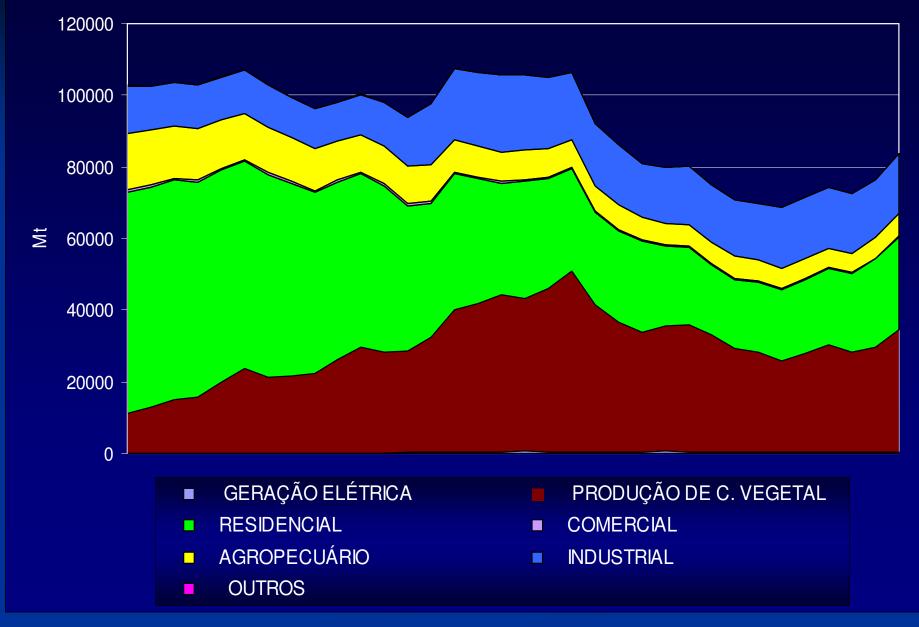

#### **EQUILÍBRIO AMBIENTAL**



Absorção de CO<sub>2</sub> na fotossíntese 7,7 t de Carbono/ha.ano

**BALANÇO DE CO<sub>2</sub>** 

Produção de madeira 15,4 t/ha.ano




Madeira útil usada para energia 10,0 t/ha.ano **Liberação de CO<sub>2</sub>** 5,0 t Carbono/ha.ano



Editado por J. O. Brito





Editado por J. O. Brito

MME 2006

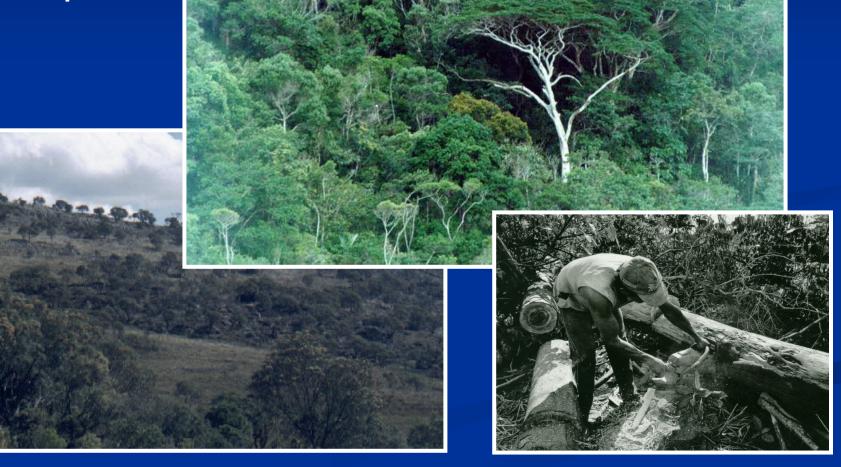
#### The linkage between the source of energy and the sector of consumption

| Sector                     | Ethanol | Biodisel | Bagasse | Wood | Charcoal |
|----------------------------|---------|----------|---------|------|----------|
| Residencial                | 1       | 0        | 1       | 2    | 1        |
| Agroindústria              | 0       | 0        | 3       | 3    | 0        |
| Transporte                 | 3       | 3        | 0       | 0    | 0        |
| Siderurgia /<br>metalurgia | 0       | 0        | 0       | 0    | 3        |
| Cimento                    | 0       | 0        | 2       | 1    | 1        |
| Química                    | 0       | 1        | 2       | 2    | 0        |
| Têxtil /<br>Cerâmica       | 0       | 1        | 2       | 2    | 0        |
| Alimentos /<br>Bebidas     | 0       | 2        | 3       | 3    | 0        |
| Papel /<br>Celulose        | 0       | 0        | 1       | 3    | 0        |
| Geração<br>Elétrica        | 1       | 3        | 3       | 3    | 0        |

0 = Without linkage

1 = Low linkage

2 = Medium linkage


3 = Hight linkage

#### **CARVÃO VEGETAL NO BRASIL**



Editado por J. O. Brito Sindifer, 2007





#### **Matéria-prima**

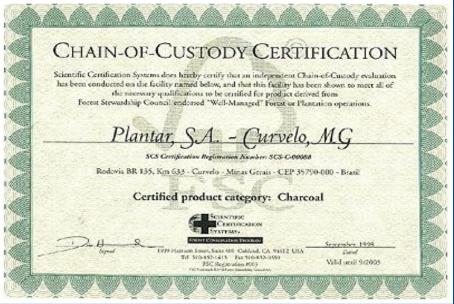





#### Mão-de-obra



#### Mão-de-obra








#### Certificações







#### **Equipamentos**



#### **Equipamentos**









#### **Equipamentos**









#### Recuperação de co-produtos









#### Controle de emissões

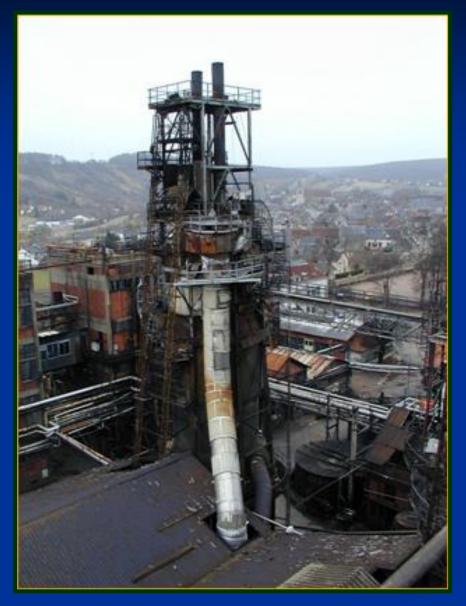












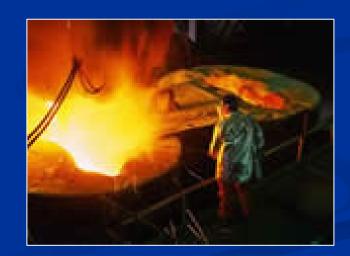







#### Processos de alto desempenho






#### **CARVÃO E SIDERURGIA**

- Produção de ferro gusa → aço e outros.
- Energia e CO para purificação do minério.
- Carvão vegetal ou coque de carvão mineral.

$$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$$





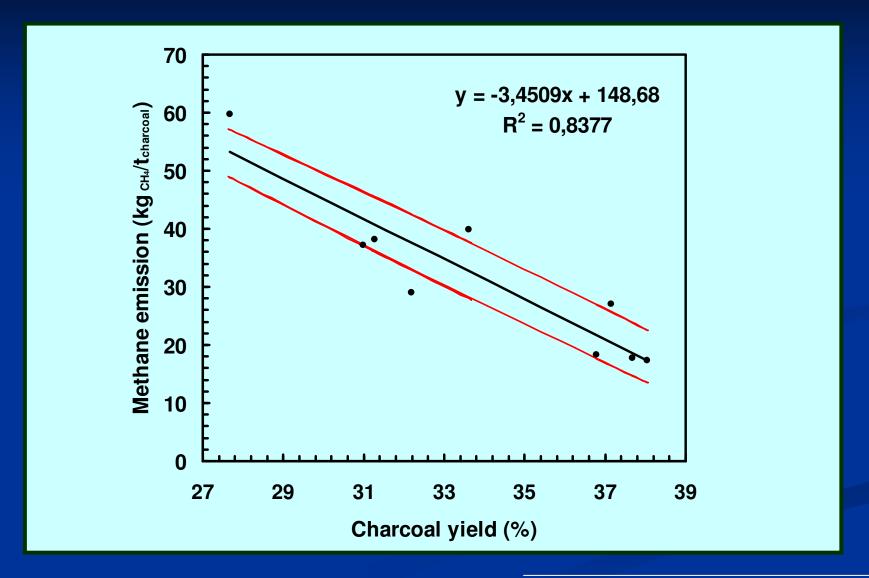
#### SIDERURGIA A CARVÃO VEGETAL E MDL

## Cenário de referência (coque mineral carvão e/ou vegetal não-renovável)

1 t ferro gusa produzido → emissão de 1,9 toneladas de CO<sub>2</sub>

Novo cenário (carvão vegetal renovável)

1 t ferro gusa produzido → resgate de 1,1 toneladas de CO<sub>2</sub>


Editado por J. O. Brito Plantar, s/d

#### SIDERURGIA A CARVÃO VEGETAL E MDL



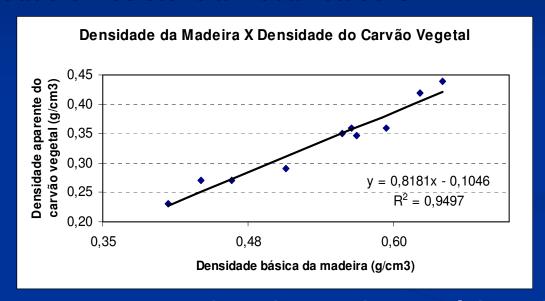
Editado por J. O. Brito Plantar, s/d

#### **CHARCOAL YELD AND METHANE EMISSIONS**














#### DESAFIOS DA SIDERURGIA A CARVÃO VEGETAL

- Menor tamanho e menor produtividade dos AF:
  - Densidade e Resistência Mecânica do CV



- Solucionar a questão da origem da matéria-prima
- Eliminar problemas sociais
- Melhoria processos de produção de carvão vegetal
- Recuperação e uso dos gases da carbonização

# Esforço brasileiro no desenvolvimento tecnológico do setor siderúrgico a carvão vegetal

Área plantada para se produzir 1 milhão de toneladas de aço por ano

Passado → 370 mil ha Atualmente → 130 mil ha Previsão → 70 mil ha

José Walter Bautista Vidal

#### SIDERURGIA A CARVÃO VEGETAL

- Expansão siderurgia carvão vegetal nos próximos 10 anos → 15 milhões de hectares, ou 1,5% do território do Brasil.
- Comparativo de áreas de cultivo atuais no Brasil:
  - Plantações florestais → 5 milhões de hectares
  - Cultivo de grãos → 50 milhões de hectares
  - Criação de gado → 150 milhões de hectares

Se o carvão vegetal ainda não é produzido de forma sustentável e correta, o erro não é do carvão vegetal, mas de quem o produz. Então, tem que se mudar a política de produção e comercialização e... só isso...

Tomaz Fendel

✓ DESMISTIFICAR, RETIRAR DA MARGINALIDADE E VALORIZAR O CONCEITO DE USO MADEIRA PARA ENERGIA

✓ MELHORAR A OBTENÇÃO E O TRATAMENTO DAS ESTATÍSTICAS

✓ ESTABELECER UMA "LINGUAGEM OFICIAL DO SISTEMA"

✓ AGREGAR MADEIRA PARA ENERGIA COMO PRODUTOS DO MANEJO E DO USO MÚLTIPLO DA FLORESTA

✓ PLANTAR FLORESTAS DE RÁPIDO CRESCIMENTO E MANEJAR FLORESTAS DE ORIGEM NATURAL

✓ BUSCAR BIOMASSAS ENERGÉTICAS COMPLEMENTARES À MADEIRA

✓ INTEGRAR COM A AGRICULTURA - PEQUENO E MÉDIO PRODUTOR

✓ APROVEITAR DO FATO DA FLORESTA SER UM EXCELENTE COMPLEMENTO À OUTRAS CULTURAS ENERGÉTICAS NA OCUPAÇÃO DE SOLOS

✓ APROVEITAR A ENORME VERSATILIDADE DA MADEIRA

✓ ORGANIZAR E OTIMIZAR A "INDÚSTRIA DA LENHA"

✓ INTENSIFICAR INSERÇÃO NO "MERCADO DE CARBONO"

✓ CRIAR UMA REDE DE PESQUISA EM FLORESTAS ENERGÉTICAS - EMBRAPA

✓ MELHORAR A EFICIÊNCIA DOS PROCESSOS DE CONVERSÃO ENERGÉTICA DA MADEIRA

✓ MUDAR OS PADRÕES DA PRODUÇÃO DE CARVÃO VEGETAL

✓ RECUPERAR MACIÇAMENTE OS GASES DA CARBONIZAÇÃO

✓ DEFINIR POLÍTICAS E EFETIVAMENTE APLICÁ-LAS NO SETOR FLORESTAL E NO SETOR ENERGÉTICO

✓ ACREDITAR E DEMONSTRAR, DE VEZ, QUE FLORESTAS E ENERGIA NÃO É ASSUNTO TERCIÁRIO DE PAUTA

